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The wave field described by the cubic-nonlinear Korteweg—de Vries equation and stimulated by a
source moving at transcritical speeds is examined by means of a numerical simulation. Depending on
the source speed relative to the linear resonance condition, different upstream-propagating solitons ap-
pear, including waves of elevation, waves of depression, and breathers. Pairwise interactions of solitons

are common.

PACS number(s): 47.10.+g, 47.20.Ky, 47.35.+1, 03.40.Kf

I. INTRODUCTION

The spatiotemporal response of nonlinear, dispersive
wave systems subject to spatially confined forcings can
exhibit a surprising composition of solution components,
especially when the forcing occurs in the vicinity of a res-
onance of the linearized system. For example, the wave
field defined by the Korteweg—de Vries (KdV) equation,
when stimulated by a single compact disturbance which
moves with a speed close to a limiting phase speed of the
underlying linear operator, may give rise to a train of
upstream-propagating solitons, multiple soliton-soliton
interactions, stationary dimpled solitary waves of eleva-
tion or depression, slowly varying cnoidal wave trains,
undular bores, dispersive lee waves, etc. [1-7]. When
multiple or distributed forcings exist, a complex interac-
tion of these solution components may occur on different
time scales. In the present paper some of the multiplicity
of solution components are reported for the modified
Korteweg—de Vries (mKdV) equation when it is forced
near resonance by a spatially isolated forcing effect.

The mKdV equation describes nonlinear wave motions
in weakly dispersive systems where, because certain sym-
metry conditions of the media and boundary conditions
comprising the waveguide are satisfied, the generic quad-
ratic nonlinearity of the KdV equation vanishes identical-
ly. In these circumstances, the nonlinearity is of cubic or-
der. A rather simple physical example where this occurs
is interfacial gravity, or capillary-gravity, waves between
two superposed, finite layers of immiscible fluids of
different properties [8]. For a special combination of
fluid densities and layer depths, the coefficient of the
quadratic nonlinear term in an expansion valid for small,
but finite, amplitude motions vanishes. Similar symmetry
conditions can be found for other weakly dispersive sys-
tems (e.g., internal waves, Rossby waves, etc.). In such
circumstances, the mKdV equation emerges as the
leading-order balance equation for the evolution of long
waves along a defining characteristic of the underlying
linear operator.
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II. PROBLEM DEFINITION

The mathematical model we study is the mKdV equa-
tion with a spatially distributed forcing taken in the form
v, +Uv, 302, — v, =1B'(x) . (1)
This equation can be derived by a consistent asymptotic
approximation in physical contexts and describes weakly
nonlinear, weakly dispersive, plane waves generated by a
distributed forcing, or source, defined by B (x) when rela-
tive motion exists between the forcing and the media of
the waveguide. A convenient physical context in which to
discuss the dynamics described by (1) is that where a
plane pulse of excess pressure B (x) moves over a shallow
liquid layer or, alternatively, where the liquid layer flows
uniformly past a stationary deformation B (x) in the bot-
tom surface of the layer. We adopt the latter point of
view in the present discussion with the coordinate x
along the waveguide (liquid layer) and pointing in a direc-
tion downstream relative to the uniform motion of the
media. The uniformly moving media has a speed close to
a long-wave phase velocity of the dispersive system. In
this way the upstream-propagating components of the
disturbance field (i.e., those along the upstream charac-
teristic) are resonant in that they cannot escape the con-
tinuous influence of the source B (x), at least on a linear
basis. The function U(t) is a scaled deviation of the
stream speed from the limiting long-wave phase velocity.
In the application of a consistent asymptotic approxima-
tion leading to the derivation of the evolution equation
(1) in any physical context, the deviatory transcritical
speed U(t) can vary on the same time scale as that for
weakly nonlinear evolution along the upstream charac-
teristic of the linearized system [5]. Hence (2) describes
resonantly forced wave generation, including passage
through resonance, in weakly dispersive systems where
the nonlinearity is third order. When U(?) is constant,
the linear advection term of the homogeneous equation
can be removed by a Galilean transformation. However,
this is not useful for the inhomogeneous equation and we
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prefer to study the equation where the forcing is fixed rel-
ative to the waveguide and the medium is in motion past
the source. One may consider temporally varying forcing
B (x,t) in this reference frame, but this introduces addi-
tional time scales which are determined entirely by the
source. The results reported here will focus almost en-
tirely on the intrinsic dynamics associated with steady,
transcritical forcing. In this case U (#) will be a constant
measuring whether the transcritical, steady forcing is su-
percritical (U >0) or subcritical (U <0). The discussion
will close with one realization where U (¢) varies in the
transcritical band.

The homogeneous or unforced version of (1) has
several well-known solution components. When the non-
linear and dispersive terms have the same sign [the nega-
tive form of (1)], these effects compete and permanent
wave forms are possible. Among these are a one-
parameter family of single-crested solitons with either
positive or negative polarity. These solutions, for the
normalization used in the negative form of (1), have the
form

=tu,(x,t) . (2)
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These and the following solutions are presented for cases
with vanishing deviatory transcritical speed U (¢). They
can be extended to nonzero U(t) by the transformation
X —Xx— f sU(r)d 7. The solution components (2) derive
from pure imaginary, discrete eigenvalues of the associat-
ed linear scattering problem arising in the inverse scatter-
ing transform (IST) for the solution of the homogeneous
equation [9,10]. Both positive and negative polarities are
possible for the negative form of (1) since a change in the
sign of v(x,t) leaves the homogeneous equation un-
changed. However, the forced version precludes this
freedom and the energy deposited in solitons with a given
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polarity will depend on the form of B (x) as well as the in-
itial condition. For this reason, and for later reference,
we note that the volume (i.e., volume per unit span, or
area) and energy of these solution components are, re-
spectively,

()= [7 vlx,0dx =(2)"?r=2.565 , 3)
C1s=(vf)—=—f_°o v2(x,0)dx =2V'6n . (4)

The volume of these solitons is quantized and indepen-
dent of the soliton amplitude, while their energy, which is
the first of an infinite set of conserved densities, varies in
direct proportion to the amplitude. Hence a zero-net-
volume disturbance field can be composed of a soliton of
each polarity, but each can have arbitrary amplitude.
This is in stark contrast to the KdV equation having
quadratic nonlinearity. In that case there is only one pos-
sible polarity of the soliton, which is determined by the
sign of the nonlinear term. Furthermore, the volume of
the wave is proportional to the amplitude and the wave
cannot deform without gain or loss of volume. Hence the
wave fields involving the soliton components of the solu-
tion set can be expected to be quite different for the KdV
and mKdV equations with identical forcing. In fact, it
will be shown later that solitons of the mKdV equation
with both polarities can be generated by resonant forcing
from a source B (x), which has entirely positive or entire-
ly negative volume.

Another family of soliton solutions of the homogene-
ous version of the negative form of (1) exist which are
known as breather or bion states. These solutions are a
two-parameter family and are fundamentally unsteady.
They obtain from the existence of a pair of complex ei-
genvalues of the associated scattering problem in the IST
satisfying the condition {=§&+in= —¢*, where the aster-
isk denotes the complex conjugate. This family of solu-
tions, taking U =0, can be expressed in the alternate
forms [9]

& cosh(8,+8)sin(0,+y)+nsinh(8;+8)cos(6,+7v)

=F4ng

where
0,=Vén{x+(n*—36"1} ,
0,=V6E(x + (32— £t} ,
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The function 6, can be viewed as the carrier phase and 6,
as the modulation phase, although these distinctions are
not so useful when the wave numbers of the two phases
are comparable. This family of solutions, in contrast to
the family of single-crested solitons (2), has zero volume.
They can be characterized by evaluating the first two

&%cosh?(8,+8)+n*cos’(6,+ )

=xv,(x,t) , (5)

[
conserved densities of the homogeneous equation [10],

Cp= [ vix,dx=3V6n, (6)

Cop=J 7 {05+ 30,050 Jlx = Vo2 —387) . (7)
Evaluation of these conservation quantities for a given
realization can yield the two independent parameters
defining the breather state.

When the nonlinear and dispersive terms in the mKdV
equation have opposite signs [i.e., the positive form of Eq.
(1)], permanent wave solutions no longer exist. A variety
of other analytical solutions of (1) can be constructed
(e.g., cnoidal waves, stationary forced solitary waves,
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similarity solutions, etc.), but they are not evident or do
not have a clearly defined role in the numerical results re-
ported here.

III. NUMERICAL RESULTS

Equation (1) was integrated numerically by a finite
difference scheme. The equation was first integrated once
with respect to the spatial coordinate to reduce the
highest derivative to second order. The initial condition
was a quiescent state with no forcing. At ¢t =0+ the
forcing was imposed centered at x =0 and the transient
evolution in the domain —L, <x <L, was computed.
The equation was taken in the form

0H (x,t)

=G0, Hxn=[" vpndy,

8
G(X,n)=—Uv F Lo+ loxx +1B(x) . ®
The integral was computed by the trapezoidal rule and
the spatial derivative was evaluated using a central
difference. A predictor-corrector method was used to ad-
vance in time, yielding a second-order accuracy in space
and time. Radiation boundary conditions were applied at
both ends of the spatial domain to allow waves to escape
with minimum reflection, but the length of the spatial in-
terval L, was almost always chosen sufficiently large to
capture the upstream response for the entire integration
time. The numerical simulation was validated by solving
the KdV equation and reproducing the results of Forn-
berg and Whitham [11]. Initial conditions were selected
consisting of three solitons with amplitudes chosen such
that two pairwise interactions occurred in an interval of
125 spatial units. The integration time was 400 units
with the largest wave propagating over 225 units. The
conserved density C; was computed and found to have a
loss of no more than one-half of a percent. Amplitude ra-
tios of the solitons in initial conditions were chosen to en-
compass the three different classes of soliton interactions
defined by Lax [12]. The maximum error in the phase
shift was one-eighth of a wavelength of the largest wave
after it propagated over 20 wavelengths and experienced
two pairwise interactions. This provided confidence that
the numerical simulations were faithfully describing the
qualitative and quantitative character of the true solu-
tion.
A sequence of numerical simulations was performed
for an isolated forcing of the form
”(x/xo)z

9)

The parameter B, measures the strength and sign of the
forcing and x, the spatial scale of the forcing. The
present study is focused on the nature of the upstream
disturbance field that appears under different transcritical
conditions, especially the possible generation of solitons
of different polarities and breather states, rather than on
an exhaustive study of the effect of different forcing dis-
turbances. For this reason the forcing parameters are
fixed at B,=1.15 and x;,=0.4. One should note that
change in the sign of B, is equivalent to a change in the
sign of v(x,t), leaving Eq. (2) unchanged. Hence a

B(x)=Bge
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change in the sign of the forcing will lead, for example, to
a change in the polarity of soliton states.

A useful diagnostic of the computed solution is the
quantity D (¢) defined by

dt

In a fluid-dynamical context, this represents the drag
force acting on the (topographic) forcing disturbance in
the waveguide. The function is quite useful in defining
the periodicity, or aperiodicity, of the resonant response
and the onset of a symmetric, supercritical state. It also
provides good insight to the temporal dynamics of the
solution field in the immediate vicinity of the forcing or
generating source.

D)= [" v(y,0B (y)dy= (10

A. Results for steady forcing

The spatiotemporal response was computed for a se-
quence of transcritical conditions using the negative form
of Eq. (1). Figure 1 shows a rastor plot of the solution
field and a time history of the drag force for a simulation
with U =—0.3. After an initial transient phase, a
trapped, (essentially) periodic response occurs for this
slightly subcritical forcing. The first two conserved den-
sities were computed to ascertain whether the computed
behavior corresponded to a stationary breather. Both C,

D(t)

40

t

FIG. 1. Solution field and drag force history for steady forc-
ing with transcritical speed U = —0.3.
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and C, were found to be time dependent. Hence the
trapped stationary response is not a standing breather.
The function D (¢) exhibits a character reminiscent of re-
laxation oscillations with strong reversals from positive
to negative values, followed by slower buildup again to
positive values of the drag force. The simulation reveals
a complete absence of any upstream response and a weak,
but definitely not vanishing, lee-wave response. The lee-
wave response is very small compared to the stationary
or trapped response.

When the transcritical velocity is increased, the period
of the trapped response increases and, eventually,
upstream-propagating breathers are born. This is shown
in Fig. 2 for the condition U =0.1. They were also ob-
served in simulations at U =—0.2 and 0, but only one
breather was captured in simulations limited to ¢ <80.
The simulation for U =0.1 shown in Fig. 2 was not con-
tinued for a sufficiently long time to ascertain whether
this emission of runaway breathers occurred periodically,
but indications from the rastor plot are suggestive that
this is the case. The simulation was initially stopped at a
time ¢ =70, but later restarted to gain a better representa-
tion of the second breather. The latter simulation was
then discontinued at the last trace on the figure because

of the appearance of numerical instabilities in the lee of

the forcing, most likely stimulated from higher wave
number disturbances exiting via the outflow boundary
condition. In the restart of the simulation at z =70, small
errors led to a slightly increased speed of the lead breath-
er. Evaluation of the conserved densities when each wave
was centered around the position x =—10 gave
Ci{})=7.11 for the lead wave and C{}’=6.99 for the
second wave. Computation of the second conserved den-
sity for each soliton yielded the values C‘zf,)=6.08 and
C%)=5.81. From these values we obtain the pairs
(i), €41)=(1.09,0.43) and (ni?,£?)=(1.07,0.42). Al-
though these differences are significant, limited resources
precluded further pursuit of the periodic nature, or lack
thereof, of the response. Nevertheless, we believe that
the asymptotic response at this transcritical condition
consists of a periodic generation of upstream-propagating
breathers.

FIG. 2. Solution field for steady forcing with transcritical
speed U =0. 1.
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As the transcritical speed is increased further, a quite
complex wave field in the upstream region emerges in
which breathers plus single-humped solitons of both po-
larities, and their mutual interactions, appear. The wave
field for U=0.208 containing all these components is
shown in Fig. 3. Figure 3(a) shows the “early” history of
the simulation where all three forms of solitons are evi-
dent. In order to pursue the “asymptotic”’ nature of the
response without extending the spatial interval, the far-
upstream field was suppressed at a time (r =120) when
its effect on the dynamics in the vicinity of the forcing re-
gion would have been minimal and the simulation was
continued. The results are shown in Fig. 3(b). It appears
that the breathers are limited to the earlier portion of the
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FIG. 3. Solution field for steady forcing with transcritical
speed U =0.208. (a) Early time history; (b) extended time histo-
ry; (c) drag history.
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simulation. Their generation may be part of the transient
adjustment phase following the impulsive switching on of
the forcing function B(x) and the true ‘“periodic ele-
ment” in the upstream wave field is that captured for
times in the approximate interval 110<r<170. Of
course, there are no a priori reasons why the upstream
response in the asymptotic state should be periodic. The
drag history in Fig. 3(c) is quite irregular with strong and
sudden jumps from positive to negative values during the
emission of an upstream-propagating component. It is
also clear that the development of these sudden transi-
tions is also accompanied by the generation of a disper-
sive lee-wave packet. The wave forms associated with the
two leading breathers are captured in the spatial struc-
tures v (x,¢;) at successive time intervals in Fig. 4. The
lead breather has essentially completed one period of its
‘“carrier” phase in this interval of four units. Using the
relations for the two conserved densities (6) and (7), the
results in Table I are obtained. Based on these results, the
predicted period for the lead breather is T =3.8.

It is interesting to compare the results for the negative
form of (1) with U =0.208 in Fig. 3 to the response of the
positive form of (1) under the same conditions. In this
case a completely supercritical response appears, after an
initial transient consisting of a dispersive lee-wave pack-
et, characterized by a single wave of elevation centered
directly above the forcing bump and having a shape
closely approximating the symmetric bump. The drag
history is shown in Fig. 5, where it is apparent that he
response, after the transient, is entirely symmetric yield-
ing zero drag.

FIG. 4. Wave forms covering approximately one period of
the lead breather shown in Fig. 3 (profiles taken at t =34-38,
successively from top to bottom).
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TABLE I. Breather soliton parameters for the waves shown
in Fig. 4.

Wave C, C, n &
First breather 6.55 6.75 1.00 0.27
Second breather 5.73 5.58 0.88 0.12

Returning to the integration of the negative form of
(1), Figs. 6 and 7 show the response for transcritical
speeds U =0.3 and 0.4, respectively. At U =0.3, breath-
ers no longer appear, but a periodic generation of
upstream-propagating single-crested solitons with both
polarities occurs. The response during one period is
characterized by a soliton of elevation followed closely by
a soliton of depression. Apparently, the lack of genera-
tion of a breather state is related to the time interval
separating the pairwise formation of solitons of elevation
and depression. Computation of the volume of the lead
pair gives {(v{"),=2.54 and (v} ),=2.52 for the wave
of elevation and depression, respectively. These values
compare very favorably with the quantization value given
in Eq. (3). In fact, these numerical values were obtained
from the response computed at ¢ =50 for which the wave
of elevation had already experienced a pairwise interac-
tion with the second solitary wave of elevation as shown
at the top of Fig. 6. At this time, the volume of the
second soliton of elevation is {(v;?’),=2.53. Computa-
tion of the conserved density C,; [cf. Eq. (4)] for these
waves at ¢ =50 gives the values C\!)=3.70, C{!),=2.43,
and C{2)=3.71. The values for the two waves of eleva-
tion are very similar, reinforcing the conclusion that the
steady forcing has yielded a periodic temporal response.
These results clearly yield 7'}’ > 7!} so that the waves of
elevation have a greater phase speed than the waves of
depression. Hence the asymptotic upstream state at this
forcing condition will contain a discrete infinity of pair-
wise soliton interactions between waves of elevation and
waves of depression. With the phase shifts accompany-
ing each pairwise interaction, one can anticipate forcing
conditions when triplet interactions occur, but we did not
explore the parameter space to obtain a realization of
such a state. Examination of the drag history reveals that
the generation of a wave of elevation coincides with a lo-
cally increased drag force, while the generation of a wave
of depression is associated with a stronger, concentrated
reversal in the drag force. In a fluid-dynamical context,

o 10 20 30 40 S0
t

FIG. 5. Drag history of nonlinear dispersive case [positive
form of (1)] under steady forcing with transcritical speed
U =0.208.
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the drag reversal would be expected to yield locally
strong decelerations and flow separation, conditions
which could give rise to strong events for scouring of the
surface and possible suspension of particulates. A data
set showing this power of the unsteady flow field associat-
ed with the generation and upstream propagation of
internal solitary waves of elevation in shallow waters off
the coast of California has been obtained recently [13].
When the transcritical speed is increased to U =0.4 for
the chosen, fixed forcing function, the generation of soli-
tons of depression has vanished and a periodic generation
consisting only of waves of elevation appears in the
upstream field (cf. Fig. 7). Computation of the volume of
both waves gives the common value 2.54. The first con-
served density C, agrees, to four significant figures, with
the common value of 3.986, for both solitons. The drag
force is always positive with concentrated peaks centered
around the soliton-generation times. The dispersive,
downstream-propagating portion of the solution field be-
comes weaker as the transcritical speed increases and,
when comparing Figs. 6 and 7, is also weaker when
upstream-propagating solitons of elevation are generated
as opposed to the generation of solitons of depression. It
appears that the lead soliton of elevation, when followed

t =45

i H H
0 10 20 30 40
t

&

FIG. 6. Solution field and drag force history for steady forc-
ing with transcritical speed U =0.3.
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FIG. 7. Solution field and drag force history for steady forc-
ing with transcritical speed U =0.4.

by a soliton of depression, has a strong compensating val-
ley on the lee side of the forcing. This valley is less pro-
nounced when solitons of depression no longer appear at
higher transcritical speeds.

At higher values of the transcritical speed the period of
soliton generation increases rapidly toward infinity and
the dispersive tails become weaker. At U =0.5 a com-
pletely supercritical state is reached. After a short tran-
sient, the drag force vanishes and a stationary, single-
crested, symmetric response centered on the forcing ap-
pears whose amplitude decreases as the speed U is in-
creased further.

B. Results for unsteady forcing

The simulations presented above all involved steady
flow over a stationary, fixed forcing. Clearly, a variety of
unsteady cases could be posed. We present here a single
unsteady realization for the negative form of (1) as a
basis for revealing the kind of localized events that may
occur. We consider a case with time-varying flow speed
where U(t) relaxes continuously from a supercritical
speed into the transcritical regime and then accelerates
back to the original supercritical speed. During any un-
steady motion, several competitions occur which deter-
mine the spatiotemporal response. First, the residence
time in the transcritical region, relative to the soliton-
generation times at any transcritical speed, will determine
the energy deposited into the upstream wave field.
Second, the depth of relaxation below the supercritical-
transcritical boundary determines the type of upstream
solitons (i.e., waves of elevation, depression, or breathers)
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which can appear. The steady results shown above reveal
that breathers are found for forcing near the subcritical-
transcritical boundary and only solitons of elevation ap-
pear near the supercritical-transcritical boundary. Hence
the nature of the upstream response depends quite cru-
cially on the trajectory of U(¢) through and in the tran-
scritical region.

The realization presented here is for the same forcing
B (x) used in all previous simulations and with the tran-
scritical trajectory

U(t)=1—1lsech*{Z( —30)} , (11)

which is symmetrically centered about the time ¢ =30.
The trajectory U (t) relaxes from the supercritical speed
U =1 down to U =0 at ¢t =30 and then returns to U =1.
The central time z =30 was chosen so that any initial
transients in the supercritical response at U =1 would
have radiated away before the trajectory entered the
transcritical region. The depth of relaxation was chosen
to be significantly below the threshold value above which
no breathers were found under steady conditions. The
computed spatiotemporal response is exhibited in Fig. 8.

FIG. 8. Solution field and drag force history for an unsteady
trajectory in the transcritical region [cf. Eq. (11)].

The quiescent, supercritical state with zero drag preced-
ing and following the transcritical excursion is evident.
The upstream response during the transcritical excursion
consists of a pair of solitons, a lead one of elevation fol-
lowed by one of depression. The lead wave of elevation
has a volume of 2.54 while the wave of depression has an
almost identical negative volume of —2.55. The first
conserved density for the two waves, respectively, is 3.61
and 2.83, consistent with the fact that the wave of depres-
sion has a slower phase speed than the wave of elevation.
The forced generation of these solitons has a concomitant
generation of a dispersive packet which radiates down-
stream from the forcing. The drag force history shows
the characteristic sharp reversal associated with the gen-
eration of the soliton of depression. It is evident that the
competition between the soliton generation time scales
and the residence time in certain portions of the tran-
scritical band has precluded the generation of any breath-
er states. An extended sample of trajectories could be ex-
amined, but the present results provide a good under-
standing of the main qualitative features of the resonantly
forced mKdV equation. Further simulations should
probably be motivated by specific applications.

IV. CONCLUDING REMARKS

The KdV equation with cubic nonlinearity has been ex-
amined by means of numerical simulation for conditions
when a spatially localized forcing disturbance moves with
transcritical speeds relative to the limiting phase speed of
the underlying dispersive system. The unbounded reso-
nant response of the linear system is avoided by nonlinear
and dispersive competitions. When nonlinearity and
dispersion are in direct competition, the resonant
response involves the generation of upstream-propagating
solitons in a manner reminiscent of the resonantly forced
KdV equation. In contrast with the KdV equation, how-
ever, the mKdV equation admits three different soliton
states and all three have been found in the upstream wave
field under certain forcing conditions. This work
identifies all three soliton states in a particular spatiotem-
poral realization. Under some forcing conditions, only
one or two of the soliton states are found to exist. When
nonlinearity and dispersion act in unison, no soliton
states exist and the upstream field is quiescent for all pa-
rameter conditions studied.

The present work has explored only a small subset of
conceivable transcritical forcing scenarios. Nevertheless,
the simulations reported here do provide a good qualita-
tive understanding of the nature and composition of the
complex upstream wave field that can be expected. This
wave field can contain, in addition to isolated solitons, in-
teractions of solitons with locally strong accelerations
and decelerations. Furthermore, the generation of
breathers and solitons of depression is accompanied by
strong and sudden reversals in the drag force acting on
the generating source. In some waveguides, such as
internal waves in a shallow layer, the physical conse-



3206 L. G. REDEKOPP AND Z. YOU 51

quences of these strongly unsteady events at the generat-
ing source, or locally where solitons collide, may be pro-
found. Other scenarios with multiple forcing sites can
give rise to local confluences of unsteady events with
complex dynamics. In such cases, the implications for
physical processes will be even greater.
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